Subject Index

AAO	See American Academy of Ophthalmology; American Academy of Optometry	
AAP	See American Academy of Pediatrics	
abduces nerve palsy	Clinical profile of extraocular muscle palsy, 6:198–201	
aberrations	Orthokeratology: an update, 1:11–18	
academic achievement	A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31	
ACBO	See Australasian College of Behavioural Optometrists	
accommodation	The effect of low plus lenses on reading rate and comprehension, 2:59–61	
	The effect of orthokeratology on accommodative and convergence function, 5:162–167	
	Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92	
	A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31	
Orthokeratology: an update, 1:11–18	Screening preschool children for visual disorders, 6:202–207	
acquired brain injury	amphetamines	
ADHD	ADHD: a parent’s perspective, 3:80–81	
Alzheimer’s disease	antipsychotic drugs	
Patients with paranoid symptoms, 3:100–104	AOA	See American Optometric Association
amblyopia	APTA	See American Physical Therapy Association
Ocular morbidity in children with autism, 1:19–24	Clinical profile of extraocular muscle palsy, 6:198–201	
Screening preschool children for visual disorders, 6:202–207	The effect of low plus lenses on reading rate and comprehension, 2:59–61	
The effect of orthokeratology on accommodative and convergence function, 5:162–167	The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57	
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92	Evaluating fall risk in people with low vision, 3:93–99	
Experimental simulation of the yips for the 3-ft putt, 3:82–87	A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31	
Ocular morbidity in children with autism, 1:19–24	Evaluating fall risk in people with low vision, 3:93–99	
Bartuccio, M.	Everyone needs a work spouse or twol, 4:116	
base out fusion	See convergence behavioral optometry. See also optometry	
[College of Optometrists in Vision Development Annual Meeting (43rd; Orlando, Florida; 2013) list of poster and paper presentations], 6:217–220		
ICBO: a coming together of international behavioral optometry, 5:160	binocular vision disorders	
Ocular morbidity in children with autism, 1:19–24		
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53		
black on white (reverse contrast)	Visual sequential memory and the effect of luminance contrast, 4:137–140	
Visual attentional deficits in reading disability, 4:141–147		
Visual attentional deficit disorder with hyperactivity	ADHD: a parent’s perspective, 3:80–81	
visual attentional deficits in reading disability, 4:141–147	Visual sequential memory and the effect of luminance contrast, 4:137–140	
View from a parent’s perspective, 3:80–81	blindness. See also visually handicapped	
Australian College of Behavioural Optometrists	Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212	
Blueberries, bagels, and gravity	blur adaptation	
ADHD: a parent’s perspective, 3:80–81	Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136	
antipsychotic drugs	Screening preschool children for visual disorders, 6:202–207	
APTA	Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53	
	case studies	
	Evaluating fall risk in people with low vision, 3:93–99	
	Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174	
	Waardenburg syndrome, 6:213–216	
	ASD. See autism spectrum disorders attention. See visual attentional deficit disorder with hyperactivity	
	ADHD: a parent’s perspective, 3:80–81	
	visual attentional deficits in reading disability, 4:141–147	
	Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136	
	BO fusion. See convergence botulinum toxin	
	Blueberries, bagels, and gravity, 2:44–47	
	brain. See cerebellum; parietal lobe	
	Patients with paranoid symptoms, 3:100–104	
	Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53	
	case studies	
	Evaluating fall risk in people with low vision, 3:93–99	
	Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174	
	Waardenburg syndrome, 6:213–216	
	Visual attentional deficits in reading disability, 4:141–147	

Volume 2 | Issue 1

Optometry & Visual Performance

Index ▶ Volume 1, 2013, Optometry and Visual Performance
Index Volume 1, 2013, Optometry and Visual Performance, continued

Screening preschool children for visual disorders, 6:202–207
Visual impediments to learning, 4:118–128
chooking (sports performance)
Experimental simulation of the yips for the 3-ft putt, 3:82–87
chromatic aberration.
See aberrations
CITT. See Convergence Insufficiency Treatment Trial
CN III palsy. See oculomotor nerve palsy
CN IV palsy. See trochlear nerve palsy
CN VI palsy. See abducens nerve palsy
College of Optometrists in Vision Development
Blueberries, bagels, and gravity, 2:44–47
A labor of love, 1:7
College of Optometrists in Vision Development Annual Meeting (43rd; Orlando, Florida; 2013) [List of poster and paper presentations], 6:217–220
color filters. See lenses, tinted communication skills
A vision in narrative medicine, 5:175–184
computer vision syndrome
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
conclusion. See brain injury conferences and congresses
[College of Optometrists in Vision Development Annual Meeting (43rd; Orlando, Florida; 2013) list of poster and paper presentations], 6:217–220
ICBO: a coming together of international behavioral optometry, 5:160
congenital disorders
Waardenburg syndrome, 6:213–216
contact lenses for myopia control. See orthokeratology contrast
Visual sequential memory and the effect of luminance contrast, 4:137–140
convergence
The effect of orthokeratology on accommodative and convergence function, 5:162–167
Orthokeratology: an update, 1:11–18
convergence insufficiency
Blueberries, bagels, and gravity, 2:44–47
Convergence Insufficiency Treatment Trial
Blueberries, bagels, and gravity, 2:44–47
tornea
Orthokeratology: an update, 1:11–18
COVD. See College of Optometrists in Vision Development
cranial nerve palsy. See palsy
crowding phenomenon
Visual attentional deficits in reading disability, 4:141–147
CVS. See computer vision syndrome cyclopia
The myth of a cycloplegic refraction, 1:9–10
The usefulness of cycloplegic retinopsia, 1:8–9
death
A vision in narrative medicine, 5:175–184
Developmental Eye Movement Test
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
diet
ADHD: a parent’s perspective, 3:80–81
diffuse axonal injury. See brain injury
dioplia
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
diplopia, physiological
Press Lites—procedures for visual field awareness, 2:62–67
discretionary plus lenses. See lenses, plus
divergent squint. See strabismus
doctor-patient relationship. See physician-patient relationship
driving
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
drugs
ADHD: a parent’s perspective, 3:80–81
Patients with paranoid symptoms, 3:100–104
dyslexia. See also reading
Visual attentional deficits in reading disability, 4:141–147
dystonia, focal. See focal dystonia dystonia canthorum
Waardenburg syndrome, 6:213–216
ADHD: a parent’s perspective, 3:80–81
Blueberries, bagels, and gravity, 2:44–47
Everyone needs a work spouse or two!, 4:116
[Everyone needs a work spouse or two! Letter to the editor and response], 6:197
ICBO: a coming together of international behavioral optometry, 5:160
A labor of love, 1:7
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
education, optometric
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
See video games emotions
A vision in narrative medicine, 5:175–184
eosotropia. See strabismus
evidence-based practice
Blueberries, bagels, and gravity, 2:44–47
exotropia. See strabismus
extinction
Press Lites—procedures for visual field awareness, 2:62–67
eye diseases
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
Screening preschool children for visual disorders, 6:202–207
eye dominance
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
eye examination. See Optometric examination
eye movement recording. See Visagraph Eye Movement Recording System
falls
Evaluating fall risk in people with low vision, 3:93–99
focal dystonia
Experimental simulation of the yips for the 3-ft putt, 3:82–87
food additives
ADHD: a parent’s perspective, 3:80–81
Four Square Step Test
Evaluating fall risk in people with low vision, 3:93–99
fourth cranial nerve palsy
Clinical profile of extraocular muscle palsy, 6:198–201
FSST. See Four Square Step Test
functional optometry. See behavioral optometry
gait
Evaluating fall risk in people with low vision, 3:93–99
games. See video games
golf
Experimental simulation of the yips for the 3-ft putt, 3:82–87
Grand Seiko WAM 5500 autorefractor
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
Guitar Hero (game)
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
Gunnar Optiks computer spectacles
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
hallucinations
Patients with paranoid symptoms, 3:100–104
head trauma. See brain injury
health care
A vision in narrative medicine, 5:175–184
health care records. See patient records
hearing
Visual impediments to learning, 4:118–128
hearing loss
Waardenburg syndrome, 6:213–216
hemianopia
Press Lites—procedures for visual field awareness, 2:62–67
homework
Questioning the value of VT “homework,” 5:169–170
Howell profiles
The effect of orthokeratology on accommodative and convergence function, 5:162–167
hyperactivity. See attention deficit disorder with hyperactivity
Index Volume 1, 2013, Optometry and Visual Performance, continued

hyperopia control
Orthokeratology: an update, 1:11–18
hypertropia
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
hypopigmentation. See pigmentary anomalies
ICBO. See International Congress of Behavioural Optometry
illness (psychological aspects)
A vision in narrative medicine, 5:175–184
International Congress of Behavioural Optometry (7th; Birmingham, England; 2014)
ICBO: a coming together of international behavioral optometry, 5:160
intraocular pressure
Orthokeratology: an update, 1:11–18
iris heterochromia
Waardenburg syndrome, 6:213–216
journals. See periodicals juvenile delinquents
Visual impediments to learning, 4:118–128
keratitis, microbial
Orthokeratology: an update, 1:11–18
learning
Office vision therapy activities at home are a necessary part of the program, 5:168–169
Questioning the value of VT “homework,” 5:169–170
learning and vision. See vision and learning
learning disabilities. See dyslexia
lenses, plus
The effect of low plus lenses on reading rate and comprehension, 2:59–61
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
lenses, tinted
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
letters to the editor
[Everyone needs a work spouse or two! Letter to the editor and response], 6:197
Life Gear Glow Sticks
Press Lites—procedures for visual field awareness, 2:62–67
lisdexamfetamine dimesylate.
See Vyvanse
literature reviews
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31
Orthokeratology: an update, 1:11–18
low vision. See also visually handicapped
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
low vision aids
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
macular diseases
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
magnocellular visual system
Visual attentional deficits in reading disability, 4:141–147
MCT. See Modified Clinical Technique
medical care. See health care
medical records. See patient records
mental illness
Patients with paranoid symptoms, 3:100–104
microbial keratitis. See keratitis, microbial
mild brain injury. See brain injury
mobility
Evaluating fall risk in people with low vision, 3:93–99
Modified Clinical Technique
Visual impediments to learning, 4:118–128
multisensory integration. See sensory integration
myopia
Screening preschool children for visual disorders, 6:202–207
Visual impediments to learning, 4:118–128
myopia control
The effect of orthokeratology on accommodative and convergence function, 5:162–167
Orthokeratology: an update, 1:11–18
narrative medicine
A vision in narrative medicine, 5:175–184
nearpoint plus. See lenses, plus nearpoint stress. See also Stress
Visual impediments to learning, 4:118–128
nearightedness. See myopia
neglect. See visual neglect
Nepal
Clinical profile of extraocular muscle palsy, 6:198–201
Ocular morbidity in children with autism, 1:19–24
Orthoptometry, pediatric eye care, and vision therapy in Nepal, 6:196
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
Screening preschool children for visual disorders, 6:202–207
Neuro Optometric Rehabilitation Association
ICBO: a coming together of international behavioral optometry, 5:160
NeuroCom Balance Mastera Sensory Organization Test Evaluating fall risk in people with low vision, 3:93–99
Neuroplasticity
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
neurorehabilitation. See also vision rehabilitation
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Nintendo Wii
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
NORA. See Neuro Optometric Rehabilitation Association Nova Southeastern University Everyone needs a work spouse or two! Letter to the editor and response, 6:197
optometry. See also behavioral optometry
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
OEP. See Optometric Extension Program Foundation ophthalmology
Blueberries, bagels, and gravity, 2:44–47
A vision in narrative medicine, 5:175–184
optical aberrations. See aberrations optometric education. See education, optometric optometric examination
The myth of a cycloplegic refraction, 1:9–10
Ocular morbidity in children with autism, 1:19–24
The usefulness of cycloplegic retinoscopy, 1:8–9
Optometric Extension Program Foundation Blueberries, bagels, and gravity, 2:44–47
ICBO: a coming together of international behavioral optometry, 5:160
A labor of love, 1:7
optometric literature. See also literature reviews
Guidelines for authors, 1:4–6
A labor of love, 1:7
optometric patients
Patients with paranoid symptoms, 3:100–104
optometric practice
A vision in narrative medicine, 5:175–184
optometric rehabilitation. See vision rehabilitation optometrists
[Everyone needs a work spouse or two! Letter to the editor and response], 6:197
optometry. See also behavioral optometry
Ocular morbidity in children with autism, 1:19–24
A vision in narrative medicine, 5:175–184
Optometry & Visual Performance
Blueberries, bagels, and gravity, 2:44–47
Guidelines for authors, 1:4–6
A labor of love, 1:7
orthoptometry
The effect of orthokeratology on accommodative and convergence function, 5:162–167
Orthokeratology: an update, 1:11–18
orthoptics. See vision therapy
Questioning the value of VT “homework,” 5:169–170
The usefulness of cycloplegic retinoscopy, 1:8–9
Vision therapy at home, 5:168–170
post trauma vision syndrome
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
prefrontal cortex
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
preschool children
Screening preschool children for visual disorders, 6:202–207
Press Lites—procedures for visual field awareness, 2:62–67
prisms
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
psychological pressure. See stress
PTVS. See post trauma vision syndrome
pupil
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
putting
Experimental simulation of the yips for the 3-ft putt, 3:82–87
reaction time
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
Visual attentional deficits in reading disability, 4:141–147
ReadAlyzer
The effect of low plus lenses on reading rate and comprehension, 2:59–61
reading
The effect of low plus lenses on reading rate and comprehension, 2:59–61
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31
Visual attentional deficits in reading disability, 4:141–147
Visual impediments to learning, 4:118–128
refraction. See also autorefraction
The myth of a cycloplegic refraction, 1:9–10
refractive errors. See ametropia
retinal defocus
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
retinitis pigmentosa
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
retinoscopy
The usefulness of cycloplegic retinoscopy, 1:8–9
schizophrenia
Patients with paranoid symptoms, 3:100–104
Schnell, P.
Everyone needs a work spouse or two!, 4:116
school performance. See academic achievement
school-based vision care
Visual impediments to learning, 4:118–128
scleral buckle surgery
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
SCO. See Southern College of Optometry
sensory integration
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Sensory Organization Test. See Visagraph Eye Movement Recording System
sixth nerve palsy. See abducens nerve palsy
SOT. See NeuroCom Balance Masterä Sensory Organization Test
SOUT. See NeuroCom Balance Masterä Sensory Organization Test
Southern College of Optometry
Everyone needs a work spouse or two!, 4:116
specific reading disability. See dyslexia
strabismus
Blueberries, bagels, and gravity, 2:44–47
Ocular morbidity in children with autism, 1:19–24
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
Screening preschool children for visual disorders, 6:202–207
stress. See also nearpoint stress
Experimental simulation of the yips for the 3-ft putt, 3:82–87
superior oblique palsy. See trochlear nerve palsy
sustained visual processing. See visual processing
Taub, M. B.
Everyone needs a work spouse or two!, 4:116
Taub, S.
ADHD: a parent’s perspective, 3:80–81
TBI, See brain injury
Test of Visual Perceptual Skills
Visual sequential memory and the effect of luminance contrast, 4:137–140
third cranial nerve palsy. See oculomotor nerve palsy
tints. See lenses, tinted
transient visual processing. See visual processing
traumatic brain injury. See brain injury
trochlear nerve palsy
Clinical profile of extraocular muscle palsy, 6:198–201
TVPS. See Test of Visual Perceptual Skills
vertical deviation. See hypertropia
video games
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
Visagraph Eye Movement Recording System
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
vision and learning
Visual impediments to learning, 4:118–128
vision care
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
Visual impediments to learning, 4:118–128
vision disorders
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31
Ocular morbidity in children with autism, 1:19–24
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
Screening preschool children for visual disorders, 6:202–207
Index ▶ Volume 1, 2013, Optometry and Visual Performance, continued

Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Visual impediments to learning, 4:118–128
vision examination. See optometric examination
vision rehabilitation
Press Lites—procedures for visual field awareness, 2:62–67
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
vision screening
Blueberries, bagels, and gravity, 2:44–47
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31
Screening preschool children for visual disorders, 6:202–207
Visual impediments to learning, 4:118–128
vision therapy
Blueberries, bagels, and gravity, 2:44–47
[College of Optometrists in Vision Development Annual Meeting (43rd; Orlando, Florida; 2013) list of poster and paper presentations], 6:217–220
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
Office vision therapy activities at home are a necessary part of the program, 5:168–169
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
Press Lites—procedures for visual field awareness, 2:62–67
Questioning the value of VT “homework,” 5:169–170
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
visual acuity
Ocular morbidity in children with autism, 1:19–24
visual attention
Press Lites—procedures for visual field awareness, 2:62–67
Visual attentional deficits in reading disability, 4:141–147
visual disorders. See vision disorders
visual fields
Press Lites—procedures for visual field awareness, 2:62–67
visual information processing. See visual processing
visual integration. See sensory integration
visual memory
Visual sequential memory and the effect of luminance contrast, 4:137–140
visual neglect
Press Lites—procedures for visual field awareness, 2:62–67
visual pathways
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Visual attentional deficits in reading disability, 4:141–147
visual perception
Visual impediments to learning, 4:118–128
Visual Performance Today
A labor of love, 1:7
visual processing
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Visual attentional deficits in reading disability, 4:141–147
visual reaction time. See reaction time
visual recall. See visual memory
visual sequential memory. See visual memory
visual training. See vision therapy
visually handicapped
Evaluating fall risk in people with low vision, 3:93–99
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
VP Today. See Visual Performance Today
Vyvanse
ADHD: a parent’s perspective, 3:80–81
Waardenburg syndrome
Waardenburg syndrome, 6:213–216
Walking Speed Test
Evaluating fall risk in people with low vision, 3:93–99
Wayne Saccadic Fixator
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
white on black (standard contrast)
Visual sequential memory and the effect of luminance contrast, 4:137–140
WHO. See World Health Organization
Wii Sports (game)
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
World Health Organization
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212
WSF. See Wayne Saccadic Fixator
yellow tints
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
yips
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Author Index
Adhikari, P.
Screening preschool children for visual disorders, 6:202–207
Adhikari, S.
Clinical profile of extraocular muscle palsy, 6:198–201
Screening preschool children for visual disorders, 6:202–207
Arthur, B.
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
Bampton, M.
Patients with paranoid symptoms, 3:100–104
Bazin, B.
[Letter to the editor], 6:197
Bennett, H.
A vision in narrative medicine, 5:175–184
Bhandari, G.
Ocular morbidity in children with autism, 1:19–24
Optometry, pediatric eye care, and vision therapy in Nepal, 6:196
Boulet, C.
Visual impediments to learning, 4:118–128
Brand, P.
The effect of orthokeratology on accommodative and convergence function, 5:162–167
Campbell, E. J.
Orthokeratology: an update, 1:11–18
Chang, A.
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
Ciuffreda, K. J.
Experimental simulation of the yips for the 3-ft putt, 3:82–87
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
Cohen, A. H.
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53
College of Optometrists in Vision Development Annual Meeting (43rd; Orlando, Florida; 2013)
[List of poster and paper presentations], 6:217–220
Doworany, K. N. See Napier-Doworany, K.
Ferris, L.
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
Gautam, P.
Waardenburg syndrome, 6:213–216
Glass, M.
A vision in narrative medicine, 5:175–184
Gould, J. A.
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136
Graham, V.
Evaluating fall risk in people with low vision, 3:93–99
Han, M. H. E.
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174
Harris, P.
The effect of low plus lenses on reading rate and comprehension, 2:59–61
Hayes, J. R.
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92
Hebert, S.
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57
Hung, G. K.
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Ismail, R. S.
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Iyer, J.
The effect of low plus lenses on reading rate and comprehension, 2:59–61

Kapoor, N.
Top-down visual framework for optometric vision therapy for those with traumatic brain injury, 2:48–53

Khanal, S.
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212

Waardenburg syndrome, 6:213–216

Kitchener, G.
Questioning the value of VT “homework,” 5:169–170

Kundart, J.
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92

Lakshminarayanan, V.
Visual attentional deficits in reading disability, 4:141–147

Lama, P.
Profile of low vision population attending low vision clinic in a peripheral eye hospital in Nepal, 6:208–212

Laudon, R. C.
The myth of a cycloplegic refraction, 1:9–10

Maino, D. M.
Blueberries, bagels, and gravity, 2:44–47

A labor of love, 1:7

Maki, Y.
Optometric management of persistent diplopia status post scleral buckle surgery, 5:171–174

Menezes, M.
Office vision therapy activities at home are a necessary part of the program, 5:168–169

Napier-Dovorany, K.
Evaluating fall risk in people with low vision, 3:93–99

Neiberg, M. N.
Patients with paranoid symptoms, 3:100–104

Shahid, M.
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Sheedy, J. E.
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92

Sharma, A. K.
Clinical profile of extraocular muscle palsy, 6:198–201

Shrestha, G. S.
Clinical profile of extraocular muscle palsy, 6:198–201

Ocular morbidity in children with autism, 1:19–24

Screening preschool children for visual disorders, 6:202–207

Shrestha, J. B.
Screening preschool children for visual disorders, 6:202–207

Simon, J.
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57

Smith, D.
The usefulness of cycloplegic retinoscopy, 1:8–9

Sridhar, A.
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Tai, Y.
Effects on accommodation and symptoms of yellow-tinted, low plus lenses, 3:88–92

Tanikella, D.
Experimental simulation of the yips for the 3-ft putt, 3:82–87

Taub, M. B.
ADHD: a parent’s perspective, 3:80–81

Everyone needs a work spouse or two!, 4:116

[Everyone needs a work spouse or two! Response to letter to the editor], 6:197

ICBO: a coming together of international behavioral optometry, 5:160

A labor of love, 1:7

Thurston, A.
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31

Thurston, M.
A literature review of refractive error and its potential effect on reading attainment in the early years of school, 1:25–31

Wrubel, D.
The effectiveness of electronic multisensory devices vs. classic optometric vision therapy procedures, 2:54–57

Yadav, N. K.
Retinal defocus and eye dominance effect on eye-hand reaction time, 4:129–136

Compiled by
Jane Paula Plass, OD
2N181 Addison Road
Villa Park, IL 60128-1168

Save the Date!

MOTOR TRAINING
within Optometric Vision Therapy

Saturday, May 31 - Sunday, June 1, 2014
Comprehensive 2-Day Seminar
12 Hours Continuing Education

INSTRUCTOR:
Caroline M. F. Hurst BSc FCOptom FBABO

LOCATION:
Metro Seattle, Washington

Watch the OEP online calendar for details and registration information

46 Optometry & Visual Performance | Volume 2 | Issue 1