Introduction/Purpose: Stereopsis is a high form of binocular vision that requires equal visual acuities in the two eyes and coordination between the eyes that provides a useful clinical screening tool. Aniseikonia is an intracocular difference in the perceived retinal image size between the two eyes that is prevalent in 1%-3.5% of the population and is likely to grow as a result of the aging population and the increase in cataract and refractive surgery (Kramer et al., 1999; Rutstein et al., 2006). Aniseikonia deteriorates binocular visual performance by elevating the stereothreshold. We compared the sensitivity of the traditional Randot Stereotest and the Paul Harris (PH) version of the Randot Stereotest, which does not contain monocular cues in detecting aniseikonic stereoeanomalies.

Methods: Thirty volunteer subjects, aged 18-32 (mean: 26 ± 3, 18 female, 12 male) with normal visual acuity and binocularly were included. Size lenses that lack optical power but magnify all meridians thereby increasing retinal image size with magnifications of 3.1%, 5%, 10%, and 19% were placed in front of one eye while obtaining two measurements with the traditional Randot and PH Randot stereotypes. The magnification, the tested eye, and the stereothreshold were tested in a random order. The stereothreshold obtained with each stereobooklet was plotted as a function of the size lens magnitude to determine the effect of the monocular magnification on stereopsis. A Bland & Altman analysis was conducted to examine if the two stereothresholds were interchangeable.

Results: Only the PH Randot demonstrated a consistent deterioration in stereothreshold due to the induced aniseikonia. Bland & Altman analysis demonstrated that the two tests are not interchangeable, and that there is a consistent bias between the traditional Randot and the PH Randot. The traditional Randot consistently yields lower stereothreshold measurements than the PH Randot.

Discussion: It is probable that the monocular positional cues in the traditional Randot aid the subjects with the induced aniseikonia in detecting which type of measurements than the due to the induced in of study.

Aniseikonia

- An intraocular difference in the perceived retinal image size between the two eyes (Millodot, 2009)
- Affect binocular visual performance (Jimenez, Ponce, Jimenez del Barco, Diaz & Perez-Ocon, 2002; Jimenez, Ponce & Gonzalez Anera, 2004).
- Prevalent in 1% to 3.5% of the population (Fullard, Rutstein & Corliss, 2007), and is likely to grow as a result of the aging population, the increase in cataract and refractive surgery (Kramer et al., 1999; Rutstein et al., 2006).
- Occurs primarily in patients with anisometropia, oblique astigmatism and other inherent optical or acquired anatomic differences between the two eyes (e.g. aphakia, pseudophakia and post-corneal refractive surgery), as well as retinal diseases (Rutstein et al, 2006).
- The human eye is capable of overcoming only 5-6% of 2.00-3.00 Diopeters (DS) of anisometropic aniseikonia (Friling, 2008).
- Aniseikonia of 2% or more frequently causes visual symptoms (Fullard, et al, 2007) including subjective distortion of space, discomfort, suppression, amblyopia, difficulties with stereopsis, and various visual dysfunctions (Rutstein et al, 2006).

Optometrists should seek a sensitive method to ascertain if the subject suffers from aniseikonia.

Purpose:

To examine the effect of induced aniseikonia on stereopsis and determine which type of stereotest is more sensitive (Randot Stereotest and the Paul Harris version of the Randot Stereotest).

Methods:

Subjects

- Thirty volunteer subjects ages 18 – 32 (mean age: 26 ± 3, 18 female, 12 male)
- Inclusion criteria: Visual Acuity, Stereopsis, Near Point of Convergence, and Amplitude of Accommodation, “within normal limits”.

Procedures:

- Medical History Questionnaire, Tests for Inclusion Criteria (VA, Stereopsis, NPC, AA)
- Size Lenses (3.1%, 5%, 10%,19%) placed in front of OD or OS (random order and random eye)

Results:

- Only the Paul Harris Randot demonstrates a reduction in stereoview as a function of induced aniseikonia.

Discussion:

Lovasik & Szymk (1985) found a reduction in stereoview measured with the Titmus stereofually and traditional Randot with size lenses between 12%-24%.

The current study found a reduction with the Paul Harris Randot (and not with the traditional Randot) with size lenses between 5%-19%.

The effects of size lenses of powers higher than 19% were not measured to simulate “real world” conditions.

Conclusion:

- The Paul Harris version of the Randot stereotest is a more sensitive test for detection of reductions in stereoview as a result of aniseikonia.

Acknowledgments: The authors would like to thank Mr. Yonatan Shapiro for his assistance in calculating the necessary parameters for the size lenses and the volunteer subjects for their participation.

References:


