Waardenburg Syndrome: A Report of Two Familial Case Series

Safal Khanal, B.Optom, Southwestern University, Cebu City, Philippines
Pragati Gautam, MD, BP Koirala Lions Center for Ophthalmic Studies, Institute of Medicine, Maharajgunj, Kathmandu, Nepal
Nabin Paudel, B.Optom, University of Auckland, Auckland, New Zealand

ABSTRACT

Background: Waardenburg syndrome is a rare autosomally-inherited developmental disorder characterized by sensorineural deafness in association with pigmentary anomalies comprising various ocular features including dystopia canthorum, iris heterochromia, eyebrow flare, and fundus alterations. It is a congenital non-progressive genetic disorder that has been found to result in hearing loss, reduced vision, reduced self esteem, problems related to appearance, and decreased intellectual functioning.

Case Reports: We report two familial case series that presented with the characteristic ocular findings and the systemic features of Waardenburg syndrome. The first series comprised a 32-year-old father with his two sons aged nine and six years. Two female siblings, aged 10 and eight years, both with cochlear implants, were included in the second series.

Conclusion: Waardenburg syndrome manifests differently with dissimilar genetic penetration even within the same family. Some individuals will require no treatment, while others may need treatment or surgery for other abnormalities. Appropriate measures can be undertaken to negotiate the disabilities resulting from the ocular conditions associated with this syndrome.

Keywords: albinotic fundus, dystopia canthorum, heterochromia iridis, sensorineural deafness, Waardenburg syndrome

Introduction

Waardenburg syndrome (WS) is a rare autosomally-inherited developmental disorder characterized by sensorineural deafness in association with pigmentary anomalies and defects of neural crest-derived tissues.1 WS is named after a Dutch ophthalmologist, P. J. Waardenburg, who described a syndrome comprising six distinctive features: lateral displacement of the medial canthi and lacrimal punctae, broad and high nasal root, hypertrichosis of the medial part of the eyebrows, partial or total hypopigmentation of the skin, white forelock, and congenital deaf mutism.2 This condition is caused by the physical absence of melanocytes in the skin, hair, and eyes. WS equally affects both sexes and all races.1,3 Its prevalence was estimated by Waardenburg to be 1/42000 of the population.2 Based on the clinical presentations, four subtypes were subsequently described.3,4

- Type I WS (WS1) consists of dystopia canthorum and broad nasal root.
- Type II WS (WS2) lacks the dystopia canthorum.
- Type III WS (WS3) (Klein-Waardenburg syndrome), a severe form of WS1, is associated with upper limb defects.
- Type IV WS (WS4) (Shah-Waardenburg syndrome) is characterised by Hirschsprung disease.

Table 1: Diagnostic criteria for WS as proposed by the Waardenburg Consortium.

<table>
<thead>
<tr>
<th>Major Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital sensorineural hearing loss</td>
</tr>
<tr>
<td>Pigmentary disturbances of iris: Complete heterochromia iridis, partial segmental heterochromia iridis, hypoplastic blue irides</td>
</tr>
<tr>
<td>White forelock</td>
</tr>
<tr>
<td>Dystopia canthorum</td>
</tr>
<tr>
<td>Affected first degree relative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital leukoderma: several areas of hypopigmented skin</td>
</tr>
<tr>
<td>Medial eyebrow flare (synophrys)</td>
</tr>
<tr>
<td>Broad and high nasal root</td>
</tr>
<tr>
<td>Hypoplasia of alae nasi</td>
</tr>
<tr>
<td>Premature graying of hair</td>
</tr>
</tbody>
</table>

The clinical variability of WS is attributed to the different penetrance and expression of the responsible genes, just as in other genetic syndromes.

Waardenburg syndrome is a rare nonprogressive congenital genetic disorder. The diagnostic criteria for WS1 was proposed by the Waardenburg Consortium in 1992.5 The individuals must have two major or one major and two minor criteria to be diagnosed as WS1 (Table 1).

Multiple genes have been implicated in the syndrome. Abnormalities in the paired box gene 3 (PAX3 gene) account for most of the WS1 and WS3 patients. Microphthalmia associated transcription factor (MITF) gene abnormality is
responsible for WS2. WS4 is heterogeneous, with reported mutations in endothelin 3 (EDN3), in its receptor endothelin receptor type B (EDNRB), or in SRY-sex determining region
Y-box 10 (SOX10).6

We report two case series of classical features of Waardenburg syndrome; one occurred within the same family covering two generations and the second involves two sisters.

Case report

Familial case series 1 (WS type I)

Our first patient, a 32-year-old male, presented to our Outpatient Department with blurry vision OD since childhood and was found to have partial heterochromia of iris OU. He had congenital hearing loss and lack of speech development. The physical examination revealed no abnormal pigmentation of the hair but hypopigmented patches on the skin. Presenting visual acuity was 6/24 in OD and 6/6 in OS, which improved to 6/12 OD with +1.50 D glasses. On further examination, ptosis of the right upper lid was noted with palpebral fissure height of 10mm, marginal reflex distance from upper lid of 1mm, and the levator muscle function of 8mm. Pupils were round, regular, and reactive to light with both direct and consensual reflex intact. Fundus was albinotic in both eyes. Dystopia canthorum (lateral displacement of medial canthus) was noted, but there was no bilateral ptosis. The patient was counselled thoroughly regarding the genetic condition and was advised to undergo a trial of patching of the left eye. He was also made aware of the surgical correction to improve the ptosis but as the patient was not quite ready, the reattachment and strengthening of levator was planned as a possible surgical option in subsequent visits (Figure 1).

The second patient was the first child of the patient above. A nine-year-old boy, he was born of non-consanguineous parents who reported that he was mute and deaf from birth. Prenatal, antenatal, and postnatal histories were all uneventful. Birth history and immunization history were all uneventful and similar to his older brother. Delivery was normal and he was born at term. Ocular examination revealed unaided binocular visual acuity of 3/2.4 with the Kay Picture test at 3 metres. One diopter of hyperopia was present in both eyes. Further examination revealed complete iris heterochromia, premature graying of hair, hypopigmented patches on the face, telecanthus, pseudoxotropia, and bilateral albinotic fundi were subsequently noted (Figure 3). This child was also counselled adequately and grey tinted spectacles were advised to reduce light sensitivity.

Familial case series 2 (WS2)

The first case in this series was a 10-year-old girl with a history of congenital bilateral sensorineural deafness who had undergone cochlear implant at the age of three and had undergone speech therapy. Birth and immunization history were all uneventful and similar to his older brother. Delivery was normal and he was born at term. Ocular examination revealed visual acuity of 3/3.8 OU when tested with the Kay Picture Test with 0.50 D of hyperopia. On further examination, partial iris heterochromia OU, dystopia canthorum, premature graying of hair, hypopigmented patches on face, telecanthus, pseudoxotropia, and bilateral albinotic fundi were subsequently noted (Figure 3). This child was also counselled adequately and grey tinted spectacles were advised for the child based on his preference.

Figure 1: Right upper lid ptosis and partial iris heterochromia in the father of first familial case.

Figure 2: Iris heterochromia, hypopigmented patches, and pseudoexotropia in older child of first familial case.

Figure 3: Partial iris heterochromia and premature graying of hair in the younger child of the first familial case.

Figure 1: Right upper lid ptosis and partial iris heterochromia in the father of first familial case.
bilateral albinotic fundus (Figure 4). The child was managed with appropriate genetic counselling and full correction of refractive error. She was also advised to wear grey tinted spectacles to reduce photosensitivity. Furthermore, a constant part time patching trial, OD/OS:1/6, was initiated to improve the shallow amblyopia present in the right eye.

The second case was her younger sister, an eight-year-old girl with a similar history of cochlear implant at the age of two. She also had undergone speech therapy. Ocular examination revealed isometropic amblyopia in both eyes, with best corrected visual acuity of 6/12 with +6.00-3.00 x180. Complete heterochromia, bilateral hypopigmented fundus, and graying of hair was noted on further examination (Figure 5). Both the parents of these children were normal, but their fraternal aunt had a similar history. The child was fully corrected for refractive error with grey tinted spectacles after appropriate cycloplegic refraction. She had no problem adapting to the prescription, as she had been wearing prescription spectacles since three years of age. Contact lenses as a possible alternative to spectacles were presented to the patient, but this was rejected on account of greater care required and also partly due to financial problems. Part time, daily alternating patching was initiated, and appropriate genetic counselling was also performed.

Discussion

Waardenburg syndrome comprises both ocular and non-ocular features. Ocular features include dystopia canthorum, iris heterochromia, eyebrow flare, and fundus alterations. Dystopia presents with bilateral ptosis, and there may be hypertelorism. Synophrys, flaring or fanning out of the eyebrow hair medially, has also been reported.\(^2,4,5,7,8\) Iris heterochromia is one of the major features which may be segmental or complete.\(^4,5,7\) Segmental heterochromia gives rise to iris bicolour with a clearly demarcated radial segmental distribution pattern of two colours.\(^5\) In some cases characteristic brilliant blue or sapphire eyes may also be seen.\(^4,5,8\) Although hypopigmentation in the fundus is not considered as a major or minor criterion, it has been reported to be an important aspect of this syndrome.\(^9,10\) Mülner-Eidenböck\(^9\) suggested an ipsilateral correlation between iris and fundus pigmentation, while Goldberg\(^10\) also showed the heterogenicity in the fundus pigmentation corresponding with that of the iris. Strabismus, usually convergent, has also been reported.\(^8\)

Hearing loss, hair hypopigmentation, and congenital leukoderma comprise the non-ocular features in WS. Hearing loss is one of the major non-ocular features, its type being mainly congenital, nonprogressive, unilateral or bilateral, and sensorineural.\(^4,5,8\)

Waardenburg syndrome is reported to account for two percent of congenital deafness.\(^6\) This clinical finding is not a universal feature of WS, but penetrance of sensorineural hearing loss has been observed to be 69% in WS1 and 87% in WS2 after excluding probands ascertained through their hearing loss.\(^1\) Abnormality in hair pigmentation is another characteristic feature. A white forelock is usually described. It can be present at birth and then disappear later in life with reappearance in teens or adulthood, or it may appear for the first time at any age.\(^4,5,8,11\) Farrer et al. also suggested the presence of premature graying of hair, with predominately scalp hair becoming white before the age of 30 years.\(^5\) Skin may also be hypopigmented, usually on face, trunk, and limbs, with or without associated white forelock.\(^11\) There may also be broad high nasal root and/or hypoplasia of alae nasi.\(^1,4,5,8\)

Other rare features include neural tube defects, sprenzel shoulder (congenital upward scapular displacement), cleft lip or palate, congenital heart abnormalities, Hirschsprung disease (primarily in cases of WS4), contractures, and limb muscle hypoplasia (in patients with WS3).\(^4,5\)
Waardenburg syndrome manifests differently in every individual, even within the same family. Some individuals will require no treatment, while others may need treatment or surgery for other abnormalities. No special diet or activity restrictions are needed. Waardenburg syndrome does not usually affect the brain. Folic acid supplementation in pregnancy has been recommended for women at increased risk of having a child with WS. Inheritance of types 3 and 4 are more complex, but genetic counselling can help assess the risk of passing WS on to a child.

Whereas pigmentation abnormalities do not herald any survival problem, hearing loss seems to be the most important prognostic factor because of impairment of life quality and poor cognitive abilities in WS1. The earlier it is diagnosed the better chance for cochlear implantation to improve speech discrimination and spoken language as in our second case series. with this disease and help to reduce the sense of isolation. Apart from dedicating the focus of management only upon hearing loss, appropriate measures can be undertaken to negotiate the disabilities resulting from the associated ocular conditions. Appropriate refractive correction with management of amblyopia, tinted spectacles, and contact lenses to address photosensitivity and prosis improvement form the core of ocular management regarding WS. Lack of resources in some societies may add to the physical and psychological obstacles faced by persons with WS. Tolerance and understanding of persons with WS will help support their integration into society.

References

Correspondence regarding this article should be emailed to safaladarsha09@gmail.com or sent to Safal Khanal, Southwestern University Urgello Street, Cebu City, Philippines 63933457724. All statements are the authors’ personal opinions and may not reflect the opinions of the representative organizations, ACBO, COVD, or OEPE, Optometry & Visual Performance, or any institution or organization with which the author may be affiliated. Permission to use reprints of this article must be obtained from the editor. Copyright 2013 Optometric Extension Program Foundation. Online access is available at www.acbo.org.au, www.covd.org, and www.oepf.org.